3.3.55 \(\int \frac {1}{1+\sin ^5(x)} \, dx\) [255]

3.3.55.1 Optimal result
3.3.55.2 Mathematica [C] (verified)
3.3.55.3 Rubi [A] (verified)
3.3.55.4 Maple [C] (verified)
3.3.55.5 Fricas [B] (verification not implemented)
3.3.55.6 Sympy [F]
3.3.55.7 Maxima [F]
3.3.55.8 Giac [F]
3.3.55.9 Mupad [B] (verification not implemented)

3.3.55.1 Optimal result

Integrand size = 8, antiderivative size = 195 \[ \int \frac {1}{1+\sin ^5(x)} \, dx=\frac {2 \arctan \left (\frac {(-1)^{2/5}+\tan \left (\frac {x}{2}\right )}{\sqrt {1-(-1)^{4/5}}}\right )}{5 \sqrt {1-(-1)^{4/5}}}+\frac {2 \arctan \left (\frac {(-1)^{4/5}+\tan \left (\frac {x}{2}\right )}{\sqrt {1+(-1)^{3/5}}}\right )}{5 \sqrt {1+(-1)^{3/5}}}-\frac {2 \arctan \left (\frac {(-1)^{3/5} \left (1+(-1)^{2/5} \tan \left (\frac {x}{2}\right )\right )}{\sqrt {1+\sqrt [5]{-1}}}\right )}{5 \sqrt {1+\sqrt [5]{-1}}}-\frac {2 \arctan \left (\frac {\sqrt [5]{-1} \left (1+(-1)^{4/5} \tan \left (\frac {x}{2}\right )\right )}{\sqrt {1-(-1)^{2/5}}}\right )}{5 \sqrt {1-(-1)^{2/5}}}-\frac {\cos (x)}{5 (1+\sin (x))} \]

output
-1/5*cos(x)/(1+sin(x))-2/5*arctan((-1)^(3/5)*(1+(-1)^(2/5)*tan(1/2*x))/(1+ 
(-1)^(1/5))^(1/2))/(1+(-1)^(1/5))^(1/2)-2/5*arctan((-1)^(1/5)*(1+(-1)^(4/5 
)*tan(1/2*x))/(1-(-1)^(2/5))^(1/2))/(1-(-1)^(2/5))^(1/2)+2/5*arctan(((-1)^ 
(4/5)+tan(1/2*x))/(1+(-1)^(3/5))^(1/2))/(1+(-1)^(3/5))^(1/2)+2/5*arctan((( 
-1)^(2/5)+tan(1/2*x))/(1-(-1)^(4/5))^(1/2))/(1-(-1)^(4/5))^(1/2)
 
3.3.55.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 5.09 (sec) , antiderivative size = 411, normalized size of antiderivative = 2.11 \[ \int \frac {1}{1+\sin ^5(x)} \, dx=-\frac {1}{10} i \text {RootSum}\left [1+2 i \text {$\#$1}-8 \text {$\#$1}^2-14 i \text {$\#$1}^3+30 \text {$\#$1}^4+14 i \text {$\#$1}^5-8 \text {$\#$1}^6-2 i \text {$\#$1}^7+\text {$\#$1}^8\&,\frac {-2 \arctan \left (\frac {\sin (x)}{\cos (x)-\text {$\#$1}}\right )+i \log \left (1-2 \cos (x) \text {$\#$1}+\text {$\#$1}^2\right )-8 i \arctan \left (\frac {\sin (x)}{\cos (x)-\text {$\#$1}}\right ) \text {$\#$1}-4 \log \left (1-2 \cos (x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}+30 \arctan \left (\frac {\sin (x)}{\cos (x)-\text {$\#$1}}\right ) \text {$\#$1}^2-15 i \log \left (1-2 \cos (x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^2+80 i \arctan \left (\frac {\sin (x)}{\cos (x)-\text {$\#$1}}\right ) \text {$\#$1}^3+40 \log \left (1-2 \cos (x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^3-30 \arctan \left (\frac {\sin (x)}{\cos (x)-\text {$\#$1}}\right ) \text {$\#$1}^4+15 i \log \left (1-2 \cos (x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^4-8 i \arctan \left (\frac {\sin (x)}{\cos (x)-\text {$\#$1}}\right ) \text {$\#$1}^5-4 \log \left (1-2 \cos (x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^5+2 \arctan \left (\frac {\sin (x)}{\cos (x)-\text {$\#$1}}\right ) \text {$\#$1}^6-i \log \left (1-2 \cos (x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^6}{i-8 \text {$\#$1}-21 i \text {$\#$1}^2+60 \text {$\#$1}^3+35 i \text {$\#$1}^4-24 \text {$\#$1}^5-7 i \text {$\#$1}^6+4 \text {$\#$1}^7}\&\right ]+\frac {2 \sin \left (\frac {x}{2}\right )}{5 \left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )} \]

input
Integrate[(1 + Sin[x]^5)^(-1),x]
 
output
(-1/10*I)*RootSum[1 + (2*I)*#1 - 8*#1^2 - (14*I)*#1^3 + 30*#1^4 + (14*I)*# 
1^5 - 8*#1^6 - (2*I)*#1^7 + #1^8 & , (-2*ArcTan[Sin[x]/(Cos[x] - #1)] + I* 
Log[1 - 2*Cos[x]*#1 + #1^2] - (8*I)*ArcTan[Sin[x]/(Cos[x] - #1)]*#1 - 4*Lo 
g[1 - 2*Cos[x]*#1 + #1^2]*#1 + 30*ArcTan[Sin[x]/(Cos[x] - #1)]*#1^2 - (15* 
I)*Log[1 - 2*Cos[x]*#1 + #1^2]*#1^2 + (80*I)*ArcTan[Sin[x]/(Cos[x] - #1)]* 
#1^3 + 40*Log[1 - 2*Cos[x]*#1 + #1^2]*#1^3 - 30*ArcTan[Sin[x]/(Cos[x] - #1 
)]*#1^4 + (15*I)*Log[1 - 2*Cos[x]*#1 + #1^2]*#1^4 - (8*I)*ArcTan[Sin[x]/(C 
os[x] - #1)]*#1^5 - 4*Log[1 - 2*Cos[x]*#1 + #1^2]*#1^5 + 2*ArcTan[Sin[x]/( 
Cos[x] - #1)]*#1^6 - I*Log[1 - 2*Cos[x]*#1 + #1^2]*#1^6)/(I - 8*#1 - (21*I 
)*#1^2 + 60*#1^3 + (35*I)*#1^4 - 24*#1^5 - (7*I)*#1^6 + 4*#1^7) & ] + (2*S 
in[x/2])/(5*(Cos[x/2] + Sin[x/2]))
 
3.3.55.3 Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {3042, 3692, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sin ^5(x)+1} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (x)^5+1}dx\)

\(\Big \downarrow \) 3692

\(\displaystyle \int \left (-\frac {1}{5 \left (\sqrt [5]{-1} \sin (x)-1\right )}-\frac {1}{5 \left (-(-1)^{2/5} \sin (x)-1\right )}-\frac {1}{5 \left ((-1)^{3/5} \sin (x)-1\right )}-\frac {1}{5 \left (-(-1)^{4/5} \sin (x)-1\right )}-\frac {1}{5 (-\sin (x)-1)}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 \arctan \left (\frac {\tan \left (\frac {x}{2}\right )+(-1)^{2/5}}{\sqrt {1-(-1)^{4/5}}}\right )}{5 \sqrt {1-(-1)^{4/5}}}+\frac {2 \arctan \left (\frac {\tan \left (\frac {x}{2}\right )+(-1)^{4/5}}{\sqrt {1+(-1)^{3/5}}}\right )}{5 \sqrt {1+(-1)^{3/5}}}-\frac {2 \arctan \left (\frac {(-1)^{3/5} \left ((-1)^{2/5} \tan \left (\frac {x}{2}\right )+1\right )}{\sqrt {1+\sqrt [5]{-1}}}\right )}{5 \sqrt {1+\sqrt [5]{-1}}}-\frac {2 \arctan \left (\frac {\sqrt [5]{-1} \left ((-1)^{4/5} \tan \left (\frac {x}{2}\right )+1\right )}{\sqrt {1-(-1)^{2/5}}}\right )}{5 \sqrt {1-(-1)^{2/5}}}-\frac {\cos (x)}{5 (\sin (x)+1)}\)

input
Int[(1 + Sin[x]^5)^(-1),x]
 
output
(2*ArcTan[((-1)^(2/5) + Tan[x/2])/Sqrt[1 - (-1)^(4/5)]])/(5*Sqrt[1 - (-1)^ 
(4/5)]) + (2*ArcTan[((-1)^(4/5) + Tan[x/2])/Sqrt[1 + (-1)^(3/5)]])/(5*Sqrt 
[1 + (-1)^(3/5)]) - (2*ArcTan[((-1)^(3/5)*(1 + (-1)^(2/5)*Tan[x/2]))/Sqrt[ 
1 + (-1)^(1/5)]])/(5*Sqrt[1 + (-1)^(1/5)]) - (2*ArcTan[((-1)^(1/5)*(1 + (- 
1)^(4/5)*Tan[x/2]))/Sqrt[1 - (-1)^(2/5)]])/(5*Sqrt[1 - (-1)^(2/5)]) - Cos[ 
x]/(5*(1 + Sin[x]))
 

3.3.55.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3692
Int[((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> 
Int[ExpandTrig[(a + b*(c*sin[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, e, f 
, n}, x] && (IGtQ[p, 0] || (EqQ[p, -1] && IntegerQ[n]))
 
3.3.55.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.68 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.45

method result size
risch \(-\frac {2}{5 \left ({\mathrm e}^{i x}+i\right )}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (1953125 \textit {\_Z}^{8}+156250 \textit {\_Z}^{6}+6250 \textit {\_Z}^{4}+125 \textit {\_Z}^{2}+1\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{i x}+2343750 \textit {\_R}^{7}+234375 i \textit {\_R}^{6}+140625 \textit {\_R}^{5}+15625 i \textit {\_R}^{4}+4375 \textit {\_R}^{3}+500 i \textit {\_R}^{2}+50 \textit {\_R} +6 i\right )\right )\) \(87\)
default \(\frac {2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-2 \textit {\_Z}^{7}+8 \textit {\_Z}^{6}-14 \textit {\_Z}^{5}+30 \textit {\_Z}^{4}-14 \textit {\_Z}^{3}+8 \textit {\_Z}^{2}-2 \textit {\_Z} +1\right )}{\sum }\frac {\left (2 \textit {\_R}^{6}-3 \textit {\_R}^{5}+10 \textit {\_R}^{4}-10 \textit {\_R}^{3}+10 \textit {\_R}^{2}-3 \textit {\_R} +2\right ) \ln \left (\tan \left (\frac {x}{2}\right )-\textit {\_R} \right )}{4 \textit {\_R}^{7}-7 \textit {\_R}^{6}+24 \textit {\_R}^{5}-35 \textit {\_R}^{4}+60 \textit {\_R}^{3}-21 \textit {\_R}^{2}+8 \textit {\_R} -1}\right )}{5}-\frac {2}{5 \left (\tan \left (\frac {x}{2}\right )+1\right )}\) \(133\)

input
int(1/(1+sin(x)^5),x,method=_RETURNVERBOSE)
 
output
-2/5/(exp(I*x)+I)+sum(_R*ln(exp(I*x)+2343750*_R^7+234375*I*_R^6+140625*_R^ 
5+15625*I*_R^4+4375*_R^3+500*I*_R^2+50*_R+6*I),_R=RootOf(1953125*_Z^8+1562 
50*_Z^6+6250*_Z^4+125*_Z^2+1))
 
3.3.55.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 848 vs. \(2 (133) = 266\).

Time = 0.41 (sec) , antiderivative size = 848, normalized size of antiderivative = 4.35 \[ \int \frac {1}{1+\sin ^5(x)} \, dx=\text {Too large to display} \]

input
integrate(1/(1+sin(x)^5),x, algorithm="fricas")
 
output
-1/100*((sqrt(5)*cos(x) + sqrt(5)*sin(x) + sqrt(5))*sqrt(2*sqrt(5)*sqrt(2* 
sqrt(5) - 5) - 10)*log(-sqrt(2*sqrt(5)*sqrt(2*sqrt(5) - 5) - 10)*(3*sqrt(5 
) + 5)*sqrt(2*sqrt(5) - 5)*cos(x) + 5*sqrt(2*sqrt(5) - 5)*(sqrt(5) + 3)*si 
n(x) + 5*(sqrt(5) - 1)*sin(x) + 20) - (sqrt(5)*cos(x) + sqrt(5)*sin(x) + s 
qrt(5))*sqrt(2*sqrt(5)*sqrt(2*sqrt(5) - 5) - 10)*log(-sqrt(2*sqrt(5)*sqrt( 
2*sqrt(5) - 5) - 10)*(3*sqrt(5) + 5)*sqrt(2*sqrt(5) - 5)*cos(x) - 5*sqrt(2 
*sqrt(5) - 5)*(sqrt(5) + 3)*sin(x) - 5*(sqrt(5) - 1)*sin(x) - 20) + (sqrt( 
5)*cos(x) + sqrt(5)*sin(x) + sqrt(5))*sqrt(-2*sqrt(5)*sqrt(2*sqrt(5) - 5) 
- 10)*log(-sqrt(-2*sqrt(5)*sqrt(2*sqrt(5) - 5) - 10)*(3*sqrt(5) + 5)*sqrt( 
2*sqrt(5) - 5)*cos(x) + 5*sqrt(2*sqrt(5) - 5)*(sqrt(5) + 3)*sin(x) - 5*(sq 
rt(5) - 1)*sin(x) - 20) - (sqrt(5)*cos(x) + sqrt(5)*sin(x) + sqrt(5))*sqrt 
(-2*sqrt(5)*sqrt(2*sqrt(5) - 5) - 10)*log(-sqrt(-2*sqrt(5)*sqrt(2*sqrt(5) 
- 5) - 10)*(3*sqrt(5) + 5)*sqrt(2*sqrt(5) - 5)*cos(x) - 5*sqrt(2*sqrt(5) - 
 5)*(sqrt(5) + 3)*sin(x) + 5*(sqrt(5) - 1)*sin(x) + 20) - (sqrt(5)*cos(x) 
+ sqrt(5)*sin(x) + sqrt(5))*sqrt(2*sqrt(5)*sqrt(-2*sqrt(5) - 5) - 10)*log( 
-sqrt(2*sqrt(5)*sqrt(-2*sqrt(5) - 5) - 10)*(3*sqrt(5) - 5)*sqrt(-2*sqrt(5) 
 - 5)*cos(x) + 5*(sqrt(5) - 3)*sqrt(-2*sqrt(5) - 5)*sin(x) - 5*(sqrt(5) + 
1)*sin(x) + 20) + (sqrt(5)*cos(x) + sqrt(5)*sin(x) + sqrt(5))*sqrt(2*sqrt( 
5)*sqrt(-2*sqrt(5) - 5) - 10)*log(-sqrt(2*sqrt(5)*sqrt(-2*sqrt(5) - 5) - 1 
0)*(3*sqrt(5) - 5)*sqrt(-2*sqrt(5) - 5)*cos(x) - 5*(sqrt(5) - 3)*sqrt(-...
 
3.3.55.6 Sympy [F]

\[ \int \frac {1}{1+\sin ^5(x)} \, dx=\int \frac {1}{\left (\sin {\left (x \right )} + 1\right ) \left (\sin ^{4}{\left (x \right )} - \sin ^{3}{\left (x \right )} + \sin ^{2}{\left (x \right )} - \sin {\left (x \right )} + 1\right )}\, dx \]

input
integrate(1/(1+sin(x)**5),x)
 
output
Integral(1/((sin(x) + 1)*(sin(x)**4 - sin(x)**3 + sin(x)**2 - sin(x) + 1)) 
, x)
 
3.3.55.7 Maxima [F]

\[ \int \frac {1}{1+\sin ^5(x)} \, dx=\int { \frac {1}{\sin \left (x\right )^{5} + 1} \,d x } \]

input
integrate(1/(1+sin(x)^5),x, algorithm="maxima")
 
output
-1/5*(5*(cos(x)^2 + sin(x)^2 + 2*sin(x) + 1)*integrate(-2/5*((4*cos(6*x) - 
 40*cos(4*x) + 4*cos(2*x) - sin(7*x) + 15*sin(5*x) - 15*sin(3*x) + sin(x)) 
*cos(8*x) + 2*(22*cos(5*x) - 22*cos(3*x) + 2*cos(x) - 8*sin(6*x) + 55*sin( 
4*x) - 8*sin(2*x))*cos(7*x) - 2*cos(7*x)^2 + 4*(110*cos(4*x) - 16*cos(2*x) 
 - 44*sin(5*x) + 44*sin(3*x) - 4*sin(x) + 1)*cos(6*x) - 32*cos(6*x)^2 + 2* 
(210*cos(3*x) - 22*cos(x) - 505*sin(4*x) + 88*sin(2*x))*cos(5*x) - 210*cos 
(5*x)^2 + 10*(44*cos(2*x) - 101*sin(3*x) + 11*sin(x) - 4)*cos(4*x) - 1200* 
cos(4*x)^2 + 44*(cos(x) - 4*sin(2*x))*cos(3*x) - 210*cos(3*x)^2 - 4*(4*sin 
(x) - 1)*cos(2*x) - 32*cos(2*x)^2 - 2*cos(x)^2 + (cos(7*x) - 15*cos(5*x) + 
 15*cos(3*x) - cos(x) + 4*sin(6*x) - 40*sin(4*x) + 4*sin(2*x))*sin(8*x) + 
(16*cos(6*x) - 110*cos(4*x) + 16*cos(2*x) + 44*sin(5*x) - 44*sin(3*x) + 4* 
sin(x) - 1)*sin(7*x) - 2*sin(7*x)^2 + 8*(22*cos(5*x) - 22*cos(3*x) + 2*cos 
(x) + 55*sin(4*x) - 8*sin(2*x))*sin(6*x) - 32*sin(6*x)^2 + (1010*cos(4*x) 
- 176*cos(2*x) + 420*sin(3*x) - 44*sin(x) + 15)*sin(5*x) - 210*sin(5*x)^2 
+ 10*(101*cos(3*x) - 11*cos(x) + 44*sin(2*x))*sin(4*x) - 1200*sin(4*x)^2 + 
 (176*cos(2*x) + 44*sin(x) - 15)*sin(3*x) - 210*sin(3*x)^2 + 16*cos(x)*sin 
(2*x) - 32*sin(2*x)^2 - 2*sin(x)^2 + sin(x))/(2*(8*cos(6*x) - 30*cos(4*x) 
+ 8*cos(2*x) - 2*sin(7*x) + 14*sin(5*x) - 14*sin(3*x) + 2*sin(x) - 1)*cos( 
8*x) - cos(8*x)^2 + 8*(7*cos(5*x) - 7*cos(3*x) + cos(x) - 4*sin(6*x) + 15* 
sin(4*x) - 4*sin(2*x))*cos(7*x) - 4*cos(7*x)^2 + 16*(30*cos(4*x) - 8*co...
 
3.3.55.8 Giac [F]

\[ \int \frac {1}{1+\sin ^5(x)} \, dx=\int { \frac {1}{\sin \left (x\right )^{5} + 1} \,d x } \]

input
integrate(1/(1+sin(x)^5),x, algorithm="giac")
 
output
sage0*x
 
3.3.55.9 Mupad [B] (verification not implemented)

Time = 14.27 (sec) , antiderivative size = 3513, normalized size of antiderivative = 18.02 \[ \int \frac {1}{1+\sin ^5(x)} \, dx=\text {Too large to display} \]

input
int(1/(sin(x)^5 + 1),x)
 
output
2*atanh((989855744*((- (2*5^(1/2))/5 - 1)^(1/2)/50 - 1/50)^(1/2))/(5*((301 
989888*tan(x/2))/5 + (2382364672*5^(1/2)*tan(x/2))/125 + (1308622848*tan(x 
/2)*(- (2*5^(1/2))/5 - 1)^(1/2))/25 - (452984832*5^(1/2)*(- (2*5^(1/2))/5 
- 1)^(1/2))/25 + (16777216*5^(1/2))/5 - 16777216*(- (2*5^(1/2))/5 - 1)^(1/ 
2) + (436207616*5^(1/2)*tan(x/2)*(- (2*5^(1/2))/5 - 1)^(1/2))/25 + 1845493 
76/25)) - (2030043136*tan(x/2)*((- (2*5^(1/2))/5 - 1)^(1/2)/50 - 1/50)^(1/ 
2))/(5*((301989888*tan(x/2))/5 + (2382364672*5^(1/2)*tan(x/2))/125 + (1308 
622848*tan(x/2)*(- (2*5^(1/2))/5 - 1)^(1/2))/25 - (452984832*5^(1/2)*(- (2 
*5^(1/2))/5 - 1)^(1/2))/25 + (16777216*5^(1/2))/5 - 16777216*(- (2*5^(1/2) 
)/5 - 1)^(1/2) + (436207616*5^(1/2)*tan(x/2)*(- (2*5^(1/2))/5 - 1)^(1/2))/ 
25 + 184549376/25)) + (1627389952*5^(1/2)*((- (2*5^(1/2))/5 - 1)^(1/2)/50 
- 1/50)^(1/2))/(25*((301989888*tan(x/2))/5 + (2382364672*5^(1/2)*tan(x/2)) 
/125 + (1308622848*tan(x/2)*(- (2*5^(1/2))/5 - 1)^(1/2))/25 - (452984832*5 
^(1/2)*(- (2*5^(1/2))/5 - 1)^(1/2))/25 + (16777216*5^(1/2))/5 - 16777216*( 
- (2*5^(1/2))/5 - 1)^(1/2) + (436207616*5^(1/2)*tan(x/2)*(- (2*5^(1/2))/5 
- 1)^(1/2))/25 + 184549376/25)) + (553648128*(- (2*5^(1/2))/5 - 1)^(1/2)*( 
(- (2*5^(1/2))/5 - 1)^(1/2)/50 - 1/50)^(1/2))/(5*((301989888*tan(x/2))/5 + 
 (2382364672*5^(1/2)*tan(x/2))/125 + (1308622848*tan(x/2)*(- (2*5^(1/2))/5 
 - 1)^(1/2))/25 - (452984832*5^(1/2)*(- (2*5^(1/2))/5 - 1)^(1/2))/25 + (16 
777216*5^(1/2))/5 - 16777216*(- (2*5^(1/2))/5 - 1)^(1/2) + (436207616*5...